

(A) $p = 1 \lor p = 5$

(C) $p = 2 \lor p = 4$

1.

2.

5.

(A) [1,4]

AGRUPAMENTO DE ESCOLAS RIBEIRO SANCHES (161214)

O penúltimo número de uma certa linha do triângulo de Pascal é 10.

TESTE MODELO (para praticar)

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

Seja $^{n}C_{p}$ um elemento de uma linha do Triângulo de Pascal, com $n,p\in\mathbb{N}_{0}$ e $\,n\geq p\,$.

Sabe-se que a soma dos elementos da linha é 64 e que ${}^nC_p + {}^nC_{n-p} = 12$. Então:

(B) $p = 1 \lor p = 6$

(D) $p = 1 \lor p = 4$

	Qual e o terceiro numero dessa linha?			
	(A) 11	(B) 19	(C) 45	(D) 144
3.	Sejam a e b dois números reais (com $a > 0$ e $b > 1$) tais que $a \log_b a = 1$.			
	Qual é, para esses valores de a e b , o valor de $\log_b \left(\frac{1}{a^2}\right)$?			
	(A) 2- <i>a</i>	(B) −2 <i>a</i>	(C) $-\frac{2}{a}$	(D) $2 - \frac{1}{a}$
4.	Indique qual das expressões seguintes é, para qualquer número real a superior a 1, igua $a^{2+\log_a 3}$.			
	(A) $3a^2$	(B) $2a^3$	(C) $3+a^2$	(D) $2+a^3$

Seja f a função de domínio $\left[\frac{1}{2}, \frac{3}{2}\right]$ definida por $f(x) = 4^x$. Qual é o contradomínio de f?

(C)[2,4]

(D) [2,8]

(B) [1,8]

Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- 1. O André tem no bolso seis moedas: duas de 1 euro e quatro de 50 cêntimos.
 - 1.1. O André retira, simultaneamente e ao acaso, três moedas do bolso.

Seja X a quantia, em euros, correspondente às moedas retiradas pelo André.

Construa a tabela de distribuição de probabilidades de X , apresentando na forma de fração irredutível.

1.2. O tio do André deu-lhe quatro moedas de 1 euro. O André juntou estas moedas às que já tinha.

Seguidamente, retira, sucessivamente e sem reposição, duas moedas do bolso.

Considere os acontecimentos:

A: "a moeda retirada em primeiro lugar é de 50 cêntimos"

B: "a moeda retirada em segundo é de 1 euro"

Calcule o valor da probabilidade P(A|B).

Apresente o resultado em percentagem arredondado às unidades.

2. Num laboratório, duas substâncias *A* e *B* estão a uma temperatura controlada. No dia um do corrente mês, a temperatura de cada uma dessas substâncias, em graus

Celsius, t horas após as zero horas, era dada, para determinado valor de k, por:

$$A(t) = 30t^2 e^{-0.5t} + 5, t \in [0, 24]$$

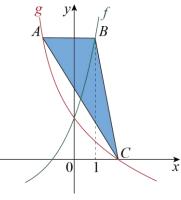
$$B(t) = 19,2t^2e^{-kt} + 5, t \in [0, 24]$$

2.1. Sabe-se que às 4 horas desse dia a substância *A* atingiu a temperatura máxima e que a substância *B* atingiu a mesma temperatura uma hora depois.

Determine o valor de *k*.

2.2. Considere k = 0, 4.

Houve um instante, depois das zeros horas, em que as duas substâncias estiveram à mesma temperatura.


Determine esse instante e apresente o resultado em horas e minutos com os minutos arredondados às unidades.

3. No referencial xOy da figura está representado um triângulo $\begin{bmatrix} ABC \end{bmatrix}$ e parte dos gráficos das funções f e g .

Sabe-se que:

•
$$f(x) = 2^{1+x} - 1$$
 e $g(x) = 2 - \log_2(x+2)$

- o ponto B pertence ao gráfico de f e tem abcissa igual a 1;
- o ponto A pertence ao gráfico de g e tem ordenada igual à do ponto B;
- o ponto C pertence ao gráfico de g e ao eixo Ox.

- **3.1.** Calcule a medida da área do triângulo [ABC].
- **3.2.** Determine, por processos analíticos, o conjunto-solução das condições:

3.2.1.
$$f(x)-2^{-x}=0$$

3.2.2.
$$\log_2(3-x) \le g(x)$$

3.3. Caracterize g^{-1} , função inversa da função g.