

AGRUPAMENTO DE ESCOLAS RIBEIRO SANCHES (161214)

12ºAno

Matemática A

Teste de Avaliação (fevereiro 2017)

A ficha é constituída por dois grupos, Grupo I e Grupo II.

∠ O Grupo I inclui 5 questões de escolha múltipla.

O Grupo II inclui 5 questões de resposta aberta (algumas questões possuem mais do que uma alínea).

GRUPO I

\$	Para cada uma delas são indicadas quatro alternativas, das quais só uma está correta.
\$	Escreva na sua folha de resposta a letra correspondente à alternativa que seleccionar para cada questão.
₩	Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita fo ilegível.
P	Não apresente cálculos.

1. Sejam a e b dois números reais positivos.

As questões do Grupo I são de escolha múltipla.

Qual das seguintes igualdades é equivalente a $\ln a = -\ln b$?

A)
$$a + b = 1$$
 B) $\frac{a}{b} = 1$ **C)** $a \times b = 1$ **D)** $a - b = 1$

- 2. Qual das seguintes expressões é, para qualquer número real positivo a, igual a $e^{2 \ln a}$?
 - **A)** 2a **B)** 2 + a **C)** 2^a **D)** a^2
- **3.** Seja *S* o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos definidos no mesmo espaço *S*. Sabe-se que:

$$P(A) = \frac{3}{10}$$
 $P(B) = \frac{1}{5}$ $P(A|B) = \frac{1}{2}$ Qual \(\epsilon\) ovalor de $P(A \cup B)$?

A) 0,35 **B)** 0,4 **C)** 0,45

4. Seleciona-se, ao acaso, uma letra de uma palavra.

Sejam A, $I \in V$ os seguintes acontecimentos:

A: "A letra selecionada é a A."

I: "A letra selecionada é o I."

V: "A letra selecionada é uma vogal."

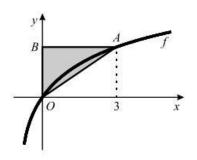
Em qual das seguintes palavras se verifica que $P[(A \cup I) | V] = \frac{1}{2}$?

A) CARNAVAL B) PASCOA C) JESUS D) CONSOADA

D) 0.5

5.

Na figura, está representada, em referencial o.n. xOy, parte do gráfico da função f, definida em] -1, $+\infty[$, por $f(x) = \log_{10}(x + 1)$


 $f(x) = \log_2(x+1)$

Na mesma figura, está também representado um triângulo retângulo [ABO].

O ponto A tem abcissa 3 e pertence ao gráfico de f.

O ponto B pertence ao eixo Oy.

Qual é a área do triângulo [ABO]?

A) 1

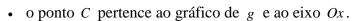
B) 2

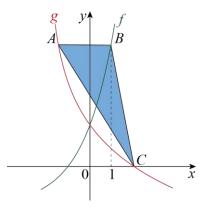
C) 3

D) 4

GRUPO II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.


1. No referencial xOy da figura está representado um triângulo [ABC] e parte dos gráficos das funções $f \in g$.


Sabe-se que:

•
$$f(x) = 2^{1+x} - 1$$
 e $g(x) = 2 - \log_2(x+2)$

• o ponto
$$B$$
 pertence ao gráfico de f e tem abcissa igual a 1;

 o ponto A pertence ao gráfico de g e tem ordenada igual à do ponto B;

2

1.1. Calcule a medida da área do triângulo [ABC].

1.2. Determine, por processos analíticos, o conjunto-solução das condições:

1.2.1.
$$f(x)-2^{-x}=0$$

1.2.2.
$$\log_2(3-x) \le g(x)$$

1.3. Caracterize g^{-1} , função inversa da função g.

- 2. A magnitude M de um sismo e a energia E libertada por esse sismo estão relacionada pela equação $\log_{10} E = 5.24 + 1.44 M$ (a energia E é medida em joules)
 - **2.1** Um físico português estimou que o terramoto de Lisboa de 1755 teve magnitude 8,6. Mostre que a energia libertada nesse sismo foi aproximadamente $4,2 \times 10^{12}$ *joules*.
 - **2.2** A ponte Vasco da Gama foi concebida para resistir a um sismo cuja energia total libertada seja cinco vezes a do terramoto de Lisboa de 1755. Qual será a magnitude de um tal sismo? Apresente o resultado na forma de dízima, arredondado às décimas.
 - **3.** Resolva, em \mathbb{R} , as equações:

3.1
$$-3 \times 2^{-x+1} + 2^x = -1$$
:

3.2
$$1 - log(x + 1) = log(x - 2)$$
.

- **4.** A magnitude aparente (m) e a magnitude absoluta (M) de uma estrela são grandezas utilizadas em Astronomia para calcular a distância (d) a que essa estrela se encontra da Terra. As três variáveis relacionam-se através da fórmula $10^{0,4(m-M)} = \frac{d^2}{100}$ (d é medida em parsec)
 - **4.1** A estrela Sirius tem magnitude aparente m = -1,44 e a magnitude absoluta M = 1,45. Determine a distância de Sirius à Terra. Apresenta o resultado em parsec, arredondado às unidades.
 - **4.2** Prove que, para quaisquer m, M e d se tem M = m + 5(1 log d).
- **5.** Considere as funções reais de variável real definidas por $f(x) = \log_3 x$ e $g(x) = 3^{x+2}$. Caracteriza a função $g \circ f$ simplificando o mais possível a expressão que a representa.

FIM

COTAÇÕES

Grupo I				40
Cada resposta cer	ta		8	
Cada resposta erra	ada, não respondida	ou anulada	0	
Grupo II				160
1				56
	1.1		16	
	1.2		26	
	1.2.1	10		
	1.2.2	16		
	1.3		14	
2				30
	2.1		15	
	2.2		15	
3				20
	3.1		10	
	3.2		10	
4				40
	4.1		20	
	4.2		20	
5				14