



# AGRUPAMENTO DE ESCOLAS RIBEIRO SANCHES (161214)

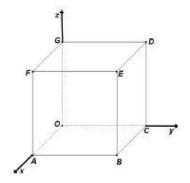
12ºAno

Matemática A

Teste de Avaliação (22 março 2017)

A ficha é constituída por dois grupos, Grupo I e Grupo II.

- ∠ O Grupo I inclui 5 questões de escolha múltipla.
- ∠ O Grupo II inclui 5 questões de resposta aberta.


#### **GRUPO I**

- As questões do Grupo I são de escolha múltipla.
- Para cada uma delas são indicadas quatro alternativas, das quais só uma está correta.
- 🔖 Escreva na sua folha de resposta a letra correspondente à alternativa que selecionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- ♥ Não apresente cálculos.
- 1. Na figura, em referencial o. n. Oxyz, está representado um cubo.

Sabe-se que:

- a face [OABC] está contida no plano xOy;
- o ponto E tem coordenadas (4,4,4);
- α é o plano mediador de [ED].

Seja M o conjunto dos pontos de coordenadas inteiras que pertencem à interseção do plano lpha com o cubo.



Quantos pontos do conjunto M têm as coordenadas todas diferentes?

(A) 5A3

(B)  ${}^{4}C_{2}$ 

(C) 5C,

(D) <sup>4</sup>A,

**2.** Seja k um número real.

Sabe-se que  $6^{k-1} = 2^k$ .

Qual das seguintes expressões representa k?

(A)  $1 + \log_3 2$ 

(B)  $2 + \log_6 3$ 

(c)  $1 - \log_{2} 6$ 

(D)  $3 + \log_3 6$ 

3. Seja f a função, de domínio  $]1, +\infty[$ , definida por  $f(x) = \ln(x-1)$ .

Considera a sucessão  $(x_n)$  de termo geral  $x_n = \frac{\sqrt{n+n}}{n}$ .

Em relação a  $\lim (f(x_n))$  podes concluir que é igual a:

(A) 1

(C) 0

Seja k um número real diferente de zero.

Sabe-se que  $\lim_{x\to 0} \frac{e^{kx}-1}{2x} = 3$ .

Então, pode concluir-se que o domínio da função g definida por  $g(x) = \ln(k-x)$  é:

(A)  $0, \frac{2}{3}$ 

(B) ]-∞,6[

(c) [3,+∞[

(D)  $\frac{3}{2}$ ,  $+\infty$ 

**5.** Seja f uma função, de domínio  $\mathbb{R}$ , e seja g a função definida por g(x) = f(x+1). A reta de equação y = 2x + 4 é a única assíntota do gráfico f. Qual das seguintes é uma equação da única assíntota do gráfico de *g*?

- (A) y = 2x + 6
- (B) y = 2x + 4 (C) y = 2x 4 (D) y = 2x 6

#### **GRUPO II**

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- **1.** Considera a função polinomial f definida por  $f(x) = x^4 3x^2 x + 2$ .
  - **1.1** Recorrendo ao Teorema de Bolzano, mostre que a função f tem pelo menos um zero pertencente ao intervalo ]0,1[.

**1.2** Seja  $x_0$  o zero de f pertencente ao intervalo ]0,1[ cuja existência foi provada na alínea anterior . Recorrendo à calculadora gráfica, dê exemplo de um intervalo do tipo ]a,b[ que satisfaça simultaneamente as condições:

$$x_0 \in ]a, b[$$
  $b - a < 10^{-2}$ 

**2.** Considera a família de funções f de domínio  $\mathbb R$  definida por:

$$f(x) = \begin{cases} \frac{x}{e^x - 1} + k & \text{se } x \neq 0 \\ k + 1 & \text{se } x = 0 \end{cases}, \ k \in \mathbb{R}$$

- 2.1. Mostra que qualquer função da família é contínua.
- **2.2.** Considera a função da família em que k=2.

Determina, caso existam, as equações das assíntotas do gráfico de f.

3.

Seja a função definida por f(x) = 2 + lnx. Mostre que o gráfico de f interseta a bissetriz dos quadrantes ímpares num ponto de abcissa pertencente ao intervalo ]3,4[.

4. Calcule:

4.1. 
$$\lim_{x \to 0^+} \frac{x - x^4}{\sqrt{x}}$$

4.2. 
$$\lim_{x\to 4} \frac{x^2-6x+8}{\ln(x-3)}$$

4.3.

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^4 - 1}$$

5. Um paraquedista salta de um helicóptero a uma distância do solo de 1200 metros.

Sabe-se que a distância do paraquedista ao solo,  $\,t\,$  segundos após a abertura do paraquedas, é dada em metros, por:

$$d(t) = 540 - 5t + 20e^{-1.5t}$$

- 5.1. Determina a distância percorrida, em queda livre, pelo paraquedista até à abertura do paraquedas.
- 5.2. Quando o paraquedista se encontrava a 500 metros do solo, ligou uma câmara de filmar e desligoua quando a distância ao solo era de 100 metros.

Recorre às capacidades gráficas da calculadora e determina a duração do vídeo, apresentando o resultado em minutos e segundos, sendo os segundos arredondados às unidades.

Na resposta deves reproduzir o gráfico ou gráficos das funções que tiveres de visualizar, indicando os pontos relevantes para a resolução do problema.

### Formulário

#### Probabilidades

$$\mu = p_1 x_1 + ... + p_n x_n$$
  
 $\sigma = \sqrt{p_1 (x_1 - \mu)^2 + ... + p_n (x_n - \mu)^2}$ 

Se  $X \in N(\mu, \sigma)$ , então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0,6827$$
  
 $P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,9545$   
 $P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,9973$ 

#### Limites notáveis

$$\lim_{x \to 0} \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sec x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

 $\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$ 

## Progressões

Soma dos n primeiros termos de uma progressão  $(u_n)$ :

Progressão aritmética:  $\frac{u_1 + u_n}{2} \times n$ 

Progressão geométrica:  $u_1 \times \frac{1-r^n}{1-r}$ 

#### FIM

| Cotações |      |      |      |      |    |     |     |     |     | Totais |     |
|----------|------|------|------|------|----|-----|-----|-----|-----|--------|-----|
| Grupo I  | 1.   | 2.   | 3.   | 4.   | 5. |     |     |     |     |        |     |
|          | 8    | 8    | 8    | 8    | 8  |     |     |     |     |        | 40  |
| Grupo II | 1.1. | 1.2. | 2.1. | 2.2. | 3. | 4.1 | 4.2 | 4.3 | 5.1 | 5.2    |     |
|          | 10   | 20   | 15   | 15   | 20 | 15  | 15  | 15  | 15  | 20     | 160 |
|          |      | K .  |      |      |    | 1.0 |     |     |     |        | 200 |